Criterios de evaluación

1. OBJETIVOS DE ETAPA

La enseñanza de las Matemáticas en la Educación Secundaria Obligatoria en Andalucía contribuirá a desarrollar en el alumnado capacidades que le permitan:

  1. Mejorar la capacidad de pensamiento reflexivo y crítico e incorporar al lenguaje y modos de argumentación, la racionalidad y las formas de expresión y razonamiento matemático, tanto en los procesos matemáticos, científicos y tecnológicos como en los distintos ámbitos de la actividad humana.
  2. Reconocer y plantear situaciones susceptibles de ser formuladas en términos matemáticos, elaborar y utilizar diferentes estrategias para abordarlas y analizar los resultados utilizando los recursos más apropiados.
  3. Cuantificar aquellos aspectos de la realidad que permitan interpretarla mejor; utilizar técnicas de recogida de la información y procedimientos de medida, realizar el análisis de los datos mediante el uso de distintas clases de números y la selección de los cálculos apropiados a cada situación.
  4. Identificar los elementos matemáticos (datos estadísticos, geométricos, gráficos, cálculos, etc.) presentes en los medios de comunicación, Internet, publicidad u otras fuentes de información, analizar críticamente las funciones que desempeñan estos elementos matemáticos y valorar su aportación para una mejor comprensión de los mensajes.
  5. Identificar las formas y relaciones espaciales que encontramos en nuestro entorno; analizar las propiedades y relaciones geométricas implicadas y ser sensible a la belleza que generan, al tiempo que estimulan la creatividad y la imaginación.
  6. Utilizar de forma adecuada las distintas herramientas tecnológicas (calculadora, ordenador, dispositivo móvil, pizarra digital interactiva, etc.), tanto para realizar cálculos como para buscar, tratar y representar información de índole diversa y también como ayuda en el aprendizaje.
  7. Actuar ante los problemas que surgen en la vida cotidiana de acuerdo con métodos científicos y propios de la actividad matemática, tales como la exploración sistemática de alternativas, la precisión en el lenguaje, la flexibilidad para modificar el punto de vista o la perseverancia en la búsqueda de soluciones.
  8. Elaborar estrategias personales para el análisis de situaciones concretas y la identificación y resolución de problemas, utilizando distintos recursos e instrumentos y valorando la conveniencia de las estrategias utilizadas en función del análisis de los resultados y de su carácter exacto o aproximado.
  9. Manifestar una actitud positiva ante la resolución de problemas y mostrar confianza en su propia capacidad para enfrentarse a ellos con éxito, adquiriendo un nivel de autoestima adecuado que le permita disfrutar de los aspectos creativos, manipulativos, estéticos, prácticos y utilitarios de las matemáticas.
  10. Integrar los conocimientos matemáticos en el conjunto de saberes que se van adquiriendo desde las distintas áreas de modo que puedan emplearse de forma creativa, analítica y crítica.
  11. Valorar las matemáticas como parte integrante de la cultura andaluza, tanto desde un punto de vista histórico como desde la perspectiva de su papel en la sociedad actual. Aplicar las competencias matemáticas adquiridas para analizar y valorar fenómenos sociales como la diversidad cultural, el cuidado de los seres vivos y el medio ambiente, la salud, el consumo, el reconocimiento de la contribución de ambos sexos al desarrollo de nuestra sociedad y al conocimiento matemático acumulado por la humanidad, la aportación al crecimiento económico desde principios y modelos de desarrollo sostenible y utilidad social o convivencia pacífica.

La enseñanza de las Matemáticas Orientadas a las Enseñanzas Académicas y Aplicadas en la Educación Secundaria Obligatoria en Andalucía contribuirá a desarrollar en los alumnos y las alumnas las capacidades que les permitan:

  1. Mejorar sus habilidades de pensamiento reflexivo y crítico e incorporar al lenguaje y modos de argumentación, la racionalidad y las formas de expresión y razonamiento matemático, tanto en los procesos matemáticos, científicos y tecnológicos como en los distintos ámbitos de la actividad humana.
  2. Reconocer y plantear situaciones susceptibles de ser formuladas en términos matemáticos, elaborar y utilizar diferentes estrategias para abordarlas y analizar los resultados utilizando los recursos más apropiados.
  3. Cuantificar aquellos aspectos de la realidad que permitan interpretarla mejor: utilizar técnicas de recogida de la información y procedimientos de medida, realizar el análisis de los datos mediante el uso de distintas clases de números y la selección de los cálculos apropiados a cada situación.
  4. Identificar los elementos matemáticos (datos estadísticos, geométricos, gráficos, cálculos, etc.) presente en los medios de comunicación, Internet, publicidad u otras fuentes de información, analizar críticamente las funciones que desempeñan estos elementos matemáticos y valorar su aportación para una mejor comprensión de los mensajes.
  5. Identificar las formas y relaciones espaciales que encontramos en nuestro entorno, analizar las propiedades y relaciones geométricas implicadas y valorar su belleza.
  6. Utilizar de forma adecuada las distintas herramientas tecnológicas (calculadora, ordenador, dispositivo móvil, pizarra digital interactiva, etc.) para realizar cálculos, buscar, tratar y representar informaciones de índole diversa y como ayuda en el aprendizaje.
  7. Actuar ante los problemas que surgen en la vida cotidiana de acuerdo con métodos científicos y propios de la actividad matemática, tales como la exploración sistemática de alternativas, la precisión en el lenguaje, la flexibilidad para modificar el punto de vista o la perseverancia en la búsqueda de soluciones.
  8. Elaborar estrategias personales para el análisis de situaciones concretas y la identificación y resolución de problemas, utilizando distintos recursos e instrumentos y valorando la conveniencia de las estrategias utilizadas en función del análisis de los resultados y de su carácter exacto o aproximado.
  9. Manifestar una actitud positiva ante la resolución de problemas y mostrar confianza en su propia capacidad para enfrentarse a ellos con éxito, adquiriendo un nivel de autoestima adecuado que le permita disfrutar de los aspectos creativos, manipulativos, estéticos, prácticos y utilitarios de las matemáticas.
  10. Integrar los conocimientos matemáticos en el conjunto de saberes que se van adquiriendo desde las distintas áreas de modo que puedan emplearse de forma creativa, analítica y crítica.
  11. Valorar las matemáticas como parte integrante de la cultura andaluza, tanto desde un punto de vista histórico como desde la perspectiva de su papel en la sociedad actual. Apreciar el conocimiento matemático acumulado por la humanidad y su aportación al desarrollo social, económico y cultural.

2. CONTENIDOS, CRITERIOS DE EVALUACIÓN Y ESTÁNDARES DE APRENDIZAJE

La numeración asignada a los criterios de evaluación se corresponde exactamente con la establecida en el Real Decreto 1105/2014, donde aparecen también los estándares de aprendizaje evaluables de cada bloque.

Bloque 1. Procesos, métodos y actitudes en matemáticas

Contenidos

Planificación del proceso de resolución de problemas. Estrategias y procedimientos puestos en práctica: uso del lenguaje apropiado: (gráfico, numérico, algebraico, etc.), reformulación del problema, resolver subproblemas, recuento exhaustivo, empezar por casos particulares sencillos, buscar regularidades y leyes, etc.

Reflexión sobre los resultados: revisión de las operaciones utilizadas, asignación de unidades a los resultados, comprobación e interpretación de las soluciones en el contexto de la situación, búsqueda de otras formas de resolución, etc.

Planteamiento de investigaciones matemáticas escolares en contextos numéricos, geométricos, funcionales, estadísticos y probabilísticos. Práctica de los procesos de matematización y modelización, en contextos de la realidad y en contextos matemáticos.

Confianza en las propias capacidades para desarrollar actitudes adecuadas y afrontar las dificultades propias del trabajo científico.

Utilización de medios tecnológicos en el proceso de aprendizaje para:

a) la recogida ordenada y la organización de datos.

b) la elaboración y creación de representaciones gráficas de datos numéricos, funcionales o estadísticos.

c) facilitar la comprensión de propiedades geométricas o funcionales y la realización de cálculos de tipo numérico, algebraico o estadístico.

d) el diseño de simulaciones y la elaboración de predicciones sobre situaciones matemáticas diversas.

e) la elaboración de informes y documentos sobre los procesos llevados a cabo y los resultados y conclusiones obtenidos.

f) comunicar y compartir, en entornos apropiados, la información y las ideas matemáticas.

Criterios de evaluación

  1. Expresar verbalmente, de forma razonada el proceso seguido en la resolución de un problema. CCL, CMCT.
  2. Utilizar procesos de razonamiento y estrategias de resolución de problemas, realizando los cálculos necesarios y comprobando las soluciones obtenidas. CMCT, CAA.
  3. Describir y analizar situaciones de cambio, para encontrar patrones, regularidades y leyes matemáticas, en contextos numéricos, geométricos, funcionales, estadísticos y probabilísticos, valorando su utilidad para hacer predicciones. CCL, CMCT, CAA.
  4. Profundizar en problemas resueltos planteando pequeñas variaciones en los datos, otras preguntas, otros contextos, etc. CMCT, CAA.
  5. Elaborar y presentar informes sobre el proceso, resultados y conclusiones obtenidas en los procesos de investigación. CCL, CMCT, CAA, SIEP.
  6. Desarrollar procesos de matematización en contextos de la realidad cotidiana (numéricos, geométricos, funcionales, estadísticos o probabilísticos) a partir de la identificación de problemas en situaciones problemáticas de la realidad. CMCT, CAA, CSC, SIEP.
  7. Valorar la modelización matemática como un recurso para resolver problemas de la realidad cotidiana, evaluando la eficacia y limitaciones de los modelos utilizados o construidos. CMCT, CAA.
  8. Desarrollar y cultivar las actitudes personales inherentes al quehacer matemático. CMCT.
  9. Superar bloqueos e inseguridades ante la resolución de situaciones desconocidas. CMCT, CAA, SIEP.
  10. Reflexionar sobre las decisiones tomadas, aprendiendo de ello para situaciones similares futuras. CMCT, CAA, SIEP.
  11. Emplear las herramientas tecnológicas adecuadas, de forma autónoma, realizando cálculos numéricos, algebraicos o estadísticos, haciendo representaciones gráficas, recreando situaciones matemáticas mediante simulaciones o analizando con sentido crítico situaciones diversas que ayuden a la comprensión de conceptos matemáticos o a la resolución de problemas. CMCT, CD, CAA.
  12. Utilizar las tecnologías de la información y la comunicación de modo habitual en el proceso de aprendizaje, buscando, analizando y seleccionando información relevante en Internet o en otras fuentes, elaborando documentos propios, haciendo exposiciones y argumentaciones de los mismos y compartiendo éstos en entornos apropiados para facilitar la interacción. CCL, CMCT, CD, CAA.

Estándares de aprendizaje evaluables

1.1. Expresa verbalmente, de forma razonada, el proceso seguido en la resolución de un problema, con el rigor y la precisión adecuada.

2.1. Analiza y comprende el enunciado de los problemas (datos, relaciones entre los datos, contexto del problema).

2.2. Valora la información de un enunciado y la relaciona con el número de soluciones del problema.

2.3. Realiza estimaciones y elabora conjeturas sobre los resultados de los problemas a resolver, valorando su utilidad y eficacia.

2.4. Utiliza estrategias heurísticas y procesos de razonamiento en la resolución de problemas reflexionando sobre el proceso de resolución de problemas. Identifica patrones, regularidades y leyes matemáticas en situaciones de cambio, en contextos numéricos, geométricos, funcionales, estadísticos y probabilísticos Utiliza las leyes matemáticas encontradas para realizar simulaciones y predicciones sobre los resultados esperables, valorando su eficacia e idoneidad.4.1.

4.1. Profundiza en los problemas una vez resueltos: revisando el proceso de resolución y los pasos e ideas importantes, analizando la coherencia de la solución o buscando otras formas de resolución.

4.2. Se plantea nuevos problemas, a partir de uno resuelto: variando los datos, proponiendo nuevas preguntas, resolviendo otros problemas parecidos, planteando casos particulares o más generales de interés, estableciendo conexiones entre el problema y la realidad.

5.1. Expone y defiende el proceso seguido además de las conclusiones obtenidas utilizando distintos lenguajes: algebraico, gráfico, geométrico, estadístico-probabilístico.

6.1. Identifica situaciones problemáticas de la realidad, susceptibles de contener problemas de interés.

6.2. Establece conexiones entre un problema del mundo real y el mundo matemático, identificando el problema o problemas matemáticos que subyacen en él y los conocimientos matemáticos necesarios.

6.3. Usa, elabora o construye modelos matemáticos sencillos que permitan la resolución de un problema o problemas dentro del campo de las matemáticas.

6.4. Interpreta la solución matemática del problema en el contexto de la realidad.

6.5. Realiza simulaciones y predicciones, en el contexto real, para valorar la adecuación y las limitaciones de los modelos, proponiendo mejoras que aumenten su eficacia.

7.1. Reflexiona sobre el proceso y obtiene conclusiones sobre él y sus resultados.

8.1. Desarrolla actitudes adecuadas para el trabajo en matemáticas: esfuerzo, perseverancia, flexibilidad y aceptación de la crítica razonada.

8.2. Se plantea la resolución de retos y problemas con la precisión, esmero e interés adecuados al nivel educativo y a la dificultad de la situación.

8.3. Distingue entre problemas y ejercicios y adopta la actitud adecuada para cada caso.

8.4. Desarrolla actitudes de curiosidad e indagación, junto con hábitos de plantear/se preguntas y buscar respuestas adecuadas, tanto en el estudio de los conceptos como en la resolución de problemas.

9.1. Toma decisiones en los procesos de resolución de problemas, de investigación y de matematización o de modelización, valorando las consecuencias de las mismas y su conveniencia por su sencillez y utilidad.

10.1. Reflexiona sobre los problemas resueltos y los procesos desarrollados, valorando la potencia y sencillez de las ideas claves, aprendiendo para situaciones futuras similares.

11.1. Selecciona herramientas tecnológicas adecuadas y las utiliza para la realización de cálculos numéricos, algebraicos o estadísticos cuando la dificultad de los mismos impide o no aconseja hacerlos manualmente.

11.2. Utiliza medios tecnológicos para hacer representaciones gráficas de funciones con expresiones algebraicas complejas y extraer información cualitativa y cuantitativa sobre ellas.

11.3. Diseña representaciones gráficas para explicar el proceso seguido en la solución de problemas, mediante la utilización de medios tecnológicos.

11.4. Recrea entornos y objetos geométricos con herramientas tecnológicas interactivas para mostrar, analizar y comprender propiedades geométricas.

12.1. Elabora documentos digitales propios (texto, presentación, imagen, video, sonido,…), como resultado del proceso de búsqueda, análisis y selección de información relevante, con la herramienta tecnológica adecuada y los comparte para su discusión o difusión.

12.2. Utiliza los recursos creados para apoyar la exposición oral de los contenidos trabajados en el aula.

12.3. Usa adecuadamente los medios tecnológicos para estructurar y mejorar su proceso de aprendizaje recogiendo la información de las actividades, analizando puntos fuertes y débiles de su proceso académico y estableciendo pautas de mejora.

Bloque 2. Números y álgebra

Contenidos

Reconocimiento de números que no pueden expresarse en forma de fracción. Números irracionales.

Representación de números en la recta real. Intervalos.

Potencias de exponente entero o fraccionario y radicales sencillos.

Interpretación y uso de los números reales en diferentes contextos eligiendo la notación y aproximación adecuadas en cada caso.

Potencias de exponente racional. Operaciones y propiedades. Jerarquía de operaciones.

Cálculo con porcentajes. Interés simple y compuesto.

Logaritmos. Definición y propiedades.

Manipulación de expresiones algebraicas. Utilización de igualdades notables. Introducción al estudio de polinomios. Raíces y factorización.

Ecuaciones de grado superior a dos. Fracciones algebraicas. Simplificación y operaciones.

Resolución gráfica y algebraica de los sistemas de ecuaciones.

Resolución de problemas cotidianos y de otras áreas de conocimiento mediante ecuaciones y sistemas.

Resolución de otros tipos de ecuaciones mediante ensayo-error o a partir de métodos gráficos con ayuda de los medios tecnológicos.

Inecuaciones de primer y segundo grado. Interpretación gráfica. Resolución de problemas en diferentes contextos utilizando inecuaciones.

Criterios de evaluación

  1. Conocer los distintos tipos de números e interpretar el significado de algunas de sus propiedades más características: divisibilidad, paridad, infinitud, proximidad, etc. CCL, CMCT, CAA.
  2. Utilizar los distintos tipos de números y operaciones, junto con sus propiedades, para recoger, transformar e intercambiar información y resolver problemas relacionados con la vida diaria y otras materias del ámbito académico. CCL, CMCT, CAA, SIEP.
  3. Construir e interpretar expresiones algebraicas, utilizando con destreza el lenguaje algebraico, sus operaciones y propiedades. CCL, CMCT, CAA.
  4. Representar y analizar situaciones y relaciones matemáticas utilizando inecuaciones, ecuaciones y sistemas para resolver problemas matemáticos y de contextos reales. CCL, CMCT, CD.

Estándares de aprendizaje evaluables

1.1. Reconoce los distintos tipos números (naturales, enteros, racionales e irracionales y reales), indicando el criterio seguido, y los utiliza para representar e interpretar adecuadamente información cuantitativa.

1.2. Aplica propiedades características de los números al utilizarlos en contextos de resolución de problemas.

2.1. Opera con eficacia empleando cálculo mental, algoritmos de lápiz y papel, calculadora o programas informáticos, y utilizando la notación más adecuada.

2.2. Realiza estimaciones correctamente y juzga si los resultados obtenidos son razonables.

2.3. Establece las relaciones entre radicales y potencias, opera aplicando las propiedades necesarias y resuelve problemas contextualizados.

2.4. Aplica porcentajes a la resolución de problemas cotidianos y financieros y valora el empleo de medios tecnológicos cuando la complejidad de los datos lo requiera.

2.5. Calcula logaritmos sencillos a partir de su definición o mediante la aplicación de sus propiedades y resuelve problemas sencillos.

2.6. Compara, ordena, clasifica y representa distintos tipos de números sobre la recta numérica utilizando diferentes escalas.

2.7. Resuelve problemas que requieran conceptos y propiedades específicas de los números.

3.1. Se expresa de manera eficaz haciendo uso del lenguaje algebraico.

3.2. Obtiene las raíces de un polinomio y lo factoriza utilizando la regla de Ruffini u otro método más adecuado.

3.3. Realiza operaciones con polinomios, igualdades notables y fracciones algebraicas sencillas.

3.4. Hace uso de la descomposición factorial para la resolución de ecuaciones de grado superior a dos.

4.1. Hace uso de la descomposición factorial para la resolución de ecuaciones de grado superior a dos.

4.2. Formula algebraicamente las restricciones indicadas en una situación de la vida real, lo estudia y resuelve, mediante inecuaciones, ecuaciones o sistemas, e interpreta los resultados obtenidos.

Bloque 3. Geometría

Contenidos

Medidas de ángulos en el sistema sexagesimal y en radianes.

Razones trigonométricas. Relaciones entre ellas. Relaciones métricas en los triángulos.

Aplicación de los conocimientos geométricos a la resolución de problemas métricos en el mundo físico: medida de longitudes, áreas y volúmenes.

Iniciación a la geometría analítica en el plano: Coordenadas. Vectores. Ecuaciones de la recta. Paralelismo, perpendicularidad.

Ecuación reducida de la circunferencia.

Semejanza. Figuras semejantes. Razón entre longitudes, áreas y volúmenes de cuerpos semejantes.

Aplicaciones informáticas de geometría dinámica que facilite la comprensión de conceptos y propiedades geométricas.

Criterios de evaluación

  1. Utilizar las unidades angulares del sistema métrico sexagesimal e internacional y las relaciones y razones de la trigonometría elemental para resolver problemas trigonométricos en contextos reales. CMCT, CAA.
  2. Calcular magnitudes efectuando medidas directas e indirectas a partir de situaciones reales, empleando los instrumentos, técnicas o fórmulas más adecuadas y aplicando las unidades de medida. CMCT, CAA.
  3. Conocer y utilizar los conceptos y procedimientos básicos de la geometría analítica plana para representar, describir y analizar formas y configuraciones geométricas sencillas. CCL, CMCT, CD, CAA.

Estándares de aprendizaje evaluables

1.1. Utiliza conceptos y relaciones de la trigonometría básica para resolver problemas empleando medios tecnológicos, si fuera preciso, para realizar los cálculos.

2.1. Utiliza las herramientas tecnológicas, estrategias y fórmulas apropiadas para calcular ángulos, longitudes, áreas y volúmenes de cuerpos y figuras geométricas.

2.2. Resuelve triángulos utilizando las razones trigonométricas y sus relaciones.

2.3. Utiliza las fórmulas para calcular áreas y volúmenes de triángulos, cuadriláteros, círculos, paralelepípedos, pirámides, cilindros, conos y esferas y las aplica para resolver problemas geométricos, asignando las unidades apropiadas.

3.1. Establece correspondencias analíticas entre las coordenadas de puntos y vectores.

3.2. Calcula la distancia entre dos puntos y el módulo de un vector.

3.3. Conoce el significado de pendiente de una recta y diferentes formas de calcularla.

3.4. Calcula la ecuación de una recta de varias formas, en función de los datos conocidos.

3.5. Reconoce distintas expresiones de la ecuación de una recta y las utiliza en el estudio analítico de las condiciones de incidencia, paralelismo y perpendicularidad.

3.6. Utiliza recursos tecnológicos interactivos para crear figuras geométricas y observar sus propiedades y características.

Bloque 4. Funciones

Contenidos

Interpretación de un fenómeno descrito mediante un enunciado, tabla, gráfica o expresión analítica. Análisis de resultados.

La tasa de variación media como medida de la variación de una función en un intervalo.

Reconocimiento de otros modelos funcionales: aplicaciones a contextos y situaciones reales.

Criterios de evaluación

  1. Identificar relaciones cuantitativas en una situación, determinar el tipo de función que puede representarlas, y aproximar e interpretar la tasa de variación media a partir de una gráfica, de datos numéricos o mediante el estudio de los coeficientes de la expresión algebraica. CMCT, CD, CAA.
  2. Analizar información proporcionada a partir de tablas y gráficas que representen relaciones funcionales asociadas a situaciones reales obteniendo información sobre su comportamiento, evolución y posibles resultados finales. CMCT, CD, CAA.

Estándares de aprendizaje evaluables

1.1. Identifica y explica relaciones entre magnitudes que pueden ser descritas mediante una relación funcional y asocia las gráficas con sus correspondientes expresiones algebraicas.

1.2. Explica y representa gráficamente el modelo de relación entre dos magnitudes para los casos de relación lineal, cuadrática, proporcionalidad inversa, exponencial y logarítmica, empleando medios tecnológicos, si es preciso.

1.3. Identifica, estima o calcula parámetros característicos de funciones elementales.

1.4. Expresa razonadamente conclusiones sobre un fenómeno a partir del comportamiento de una gráfica o de los valores de una tabla.

1.5. Analiza el crecimiento o decrecimiento de una función mediante la tasa de variación media calculada a partir de la expresión algebraica, una tabla de valores o de la propia gráfica.

1.6. Interpreta situaciones reales que responden a funciones sencillas: lineales, cuadráticas, de proporcionalidad inversa, definidas a trozos y exponenciales y logarítmicas.

2.1. Interpreta críticamente datos de tablas y gráficos sobre diversas situaciones reales.

2.2. Representa datos mediante tablas y gráficos utilizando ejes y unidades adecuadas.

2.3. Describe las características más importantes que se extraen de una gráfica señalando los valores puntuales o intervalos de la variable que las determinan utilizando tanto lápiz y papel como medios tecnológicos.

2.4. Relaciona distintas tablas de valores y sus gráficas correspondientes.

Bloque 5. Estadística y probabilidad

Contenidos

Introducción a la combinatoria: combinaciones, variaciones y permutaciones.

Cálculo de probabilidades mediante la regla de Laplace y otras técnicas de recuento.

Probabilidad simple y compuesta. Sucesos dependientes e independientes. Experiencias aleatorias compuestas.

Utilización de tablas de contingencia y diagramas de árbol para la asignación de probabilidades. Probabilidad condicionada.

Utilización del vocabulario adecuado para describir y cuantificar situaciones relacionadas con el azar y la estadística.

Identificación de las fases y tareas de un estudio estadístico.

Gráficas estadísticas: Distintos tipos de gráficas. Análisis crítico de tablas y gráficas estadísticas en los medios de comunicación. Detección de falacias.

Medidas de centralización y dispersión: interpretación, análisis y utilización.

Comparación de distribuciones mediante el uso conjunto de medidas de posición y dispersión.

Construcción e interpretación de diagramas de dispersión.

Introducción a la correlación.

Criterios de evaluación

  1. Resolver diferentes situaciones y problemas de la vida cotidiana aplicando los conceptos del cálculo de probabilidades y técnicas de recuento adecuadas. CMCT, CAA, SIEP.
  2. Calcular probabilidades simples o compuestas aplicando la regla de Laplace, los diagramas de árbol, las tablas de contingencia u otras técnicas combinatorias. CMCT, CAA.
  3. Utilizar el lenguaje adecuado para la descripción de datos y analizar e interpretar datos estadísticos que aparecen en los medios de comunicación. CCL, CMCT, CD, CAA, CSC, SIEP.
  4. Elaborar e interpretar tablas y gráficos estadísticos, así como los parámetros estadísticos más usuales, en distribuciones unidimensionales y bidimensionales, utilizando los medios más adecuados (lápiz y papel, calculadora u ordenador), y valorando cualitativamente la representatividad de las muestras utilizadas. CCL, CMCT, CD, CAA, SIEP.

Estándares de aprendizaje evaluables

1.1. Aplica en problemas contextualizados los conceptos de variación, permutación y combinación.

1.2. Identifica y describe situaciones y fenómenos de carácter aleatorio, utilizando la terminología adecuada para describir sucesos.

1.3. Aplica técnicas de cálculo de probabilidades en la resolución de diferentes situaciones y problemas de la vida cotidiana.

1.4. Formula y comprueba conjeturas sobre los resultados de experimentos aleatorios y simulaciones.

1.5. Utiliza un vocabulario adecuado para describir y cuantificar situaciones relacionadas con el azar.

1.6. Interpreta un estudio estadístico a partir de situaciones concretas cercanas al alumno.

2.1. Aplica la regla de Laplace y utiliza estrategias de recuento sencillas y técnicas combinatorias.

2.2. Calcula la probabilidad de sucesos compuestos sencillos utilizando, especialmente, los diagramas de árbol o las tablas de contingencia.

2.3. Resuelve problemas sencillos asociados a la probabilidad condicionada.

2.4. Analiza matemáticamente algún juego de azar sencillo, comprendiendo sus reglas y calculando las probabilidades adecuadas.

3.1. Utiliza un vocabulario adecuado para describir, cuantificar y analizar situaciones relacionadas con el azar.

4.1. Interpreta críticamente datos de tablas y gráficos estadísticos.

4.2. Representa datos mediante tablas y gráficos estadísticos utilizando los medios tecnológicos más adecuados.

4.3. Calcula e interpreta los parámetros estadísticos de una distribución de datos utilizando los medios más adecuados (lápiz y papel, calculadora u ordenador).

4.4. Selecciona una muestra aleatoria y valora la representatividad de la misma en muestras muy pequeñas.

4.5. Representa diagramas de dispersión e interpreta la relación existente entre las variables.

En los criterios de evaluación se trabajan las competencias clave:

  • Competencia en comunicación lingüística CCL
  • Competencia matemática y competencias básicas en ciencia y tecnología CMCT
  • Competencia digital CD
  • Competencia para Aprender a aprender CAA
  • Sentido de la iniciativa y espíritu emprendedor SIEP
  • Conciencia y expresiones culturales CEC
  • Competencias sociales y cívicas CSC
  • Competencia espiritual CE

 

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s